Explicit two-source extractors for near-logarithmic min-entropy

نویسندگان

  • Avraham Ben-Aroya
  • Dean Doron
  • Amnon Ta-Shma
چکیده

We explicitly construct extractors for two independent n-bit sources of (log n) minentropy. Previous constructions required either polylog(n) min-entropy [CZ15, Mek15] or five sources [Coh16]. Our result extends the breakthrough result of Chattopadhyay and Zuckerman [CZ15] and uses the non-malleable extractor of Cohen [Coh16]. The main new ingredient in our construction is a somewhere-random condenser with a small entropy gap, used as a sampler. We construct such somewhere-random condensers using the error reduction mechanism of Raz et al. [RRV99] together with the high-error, constant degree dispersers of Zuckerman [Zuc06]. ∗The Blavatnik School of Computer Science, Tel-Aviv University, Tel Aviv 69978, Israel. Supported by the Israel science Foundation grant no. 994/14 and by the United States – Israel Binational Science Foundation grant no. 2010120. †The Blavatnik School of Computer Science, Tel-Aviv University, Tel Aviv 69978, Israel. Email: [email protected]. Supported by the Israel science Foundation grant no. 994/14 and by the United States – Israel Binational Science Foundation grant no. 2010120. ‡The Blavatnik School of Computer Science, Tel-Aviv University, Tel Aviv 69978, Israel. Email: [email protected]. Supported by the Israel science Foundation grant no. 994/14 and by the United States – Israel Binational Science Foundation grant no. 2010120. ISSN 1433-8092 Electronic Colloquium on Computational Complexity, Report No. 88 (2016)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Extractors for Interleaved Sources

We study how to extract randomness from a C-interleaved source, that is, a source comprised of C independent sources whose bits or symbols are interleaved. We describe a simple approach for constructing such extractors that yields: • For some δ > 0, c > 0, explicit extractors for 2-interleaved sources on {0, 1} when one source has min-entropy at least (1 − δ)n and the other has min-entropy at l...

متن کامل

Extracting All the Randomness from a Weakly Random Source

In this paper, we give two explicit constructions of extractors, both of which work for a source of any min-entropy on strings of length n. The rst extracts any constant fraction of the min-entropy using O(log n) additional random bits. The second extracts all the min-entropy using O(log n) additional random bits. Both constructions use fewer truly random bits than any previous construction whi...

متن کامل

Better short-seed extractors against quantum knowledge

We construct a strong extractor against quantum storage that works for every min-entropy k, has logarithmic seed length, and outputs Ω(k) bits, provided that the quantum adversary has at most βk qubits of memory, for any β < 12 . Previous constructions required poly-logarithmic seed length to output such a fraction of the entropy and, in addition, required super-logarithmic seed length for smal...

متن کامل

Non-Malleable Extractors with Logarithmic Seeds

We construct non-malleable extractors with seed length d = O(log n+log(1/ε)) for n-bit sources with min-entropy k = Ω(d), where ε is the error guarantee. In particular, the seed length is logarithmic in n for ε > 2−(logn) 1/3 . This improves upon existing constructions that either require super-logarithmic seed length even for constant error guarantee, or otherwise only support min-entropy n/po...

متن کامل

An E icient Reduction from Two-Source to Non-malleable Extractors

The breakthrough result of Chattopadhyay and Zuckerman (2016) gives a reduction from the construction of explicit two-source extractors to the construction of explicit non-malleable extractors. However, even assuming the existence of optimal explicit nonmalleable extractors only gives a two-source extractor (or a Ramsey graph) for poly(logn) entropy, rather than the optimal O (logn). In this pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Colloquium on Computational Complexity (ECCC)

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2016